Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Ethnopharmacol ; 323: 117702, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38176665

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Qing-Re-Chu-Shi Decoction (QRCSD), a traditional Chinese herbal formula, has been employed as a complementary and alternative therapy for inflammatory skin diseases. However, its active constituents and the mechanistic basis of its action on atopic dermatitis remain in adequately understood. AIM OF THE STUDY: Atopic dermatitis (AD) is an allergic dermatitis marked by eczematous lesions and pruritus. The study aimed to elucidate the underlying effects of QRCSD on AD and to identify the components responsible for its therapeutic efficacy in a mouse model. MATERIALS AND METHODS: Network pharmacology and UPLC-mass analysis were used to anticipate the pharmacological mechanisms and to identify active components of QRCSD, respectively. A DNCB-induced AD-like model was established in NC/Nga mice. QRCSD or prednisolone (as a positive control) was administered via gavage every other day from day14 to day 21. Dermatitis severity score, scratching behavior, skin barrier function, spleen index, Th1/Th2 lymphocyte ratio, and serum IgE levels were evaluated. Protein arrays, including 40 inflammatory cytokines, were performed on skin lesions, followed by confirmation experiments of Western blotting in dorsal skin lesions. RESULTS: The construction of a QRCSD-AD-Network and topological analysis firstly proposed potential targets of QRCSD acting on AD. Animal experiments demonstrated that oral administration of QRCSD ameliorated AD-like lesions, reduced epidermal thickness and mast cell count, decreased serum IgE levels, augmented tight junction protein (Claudin 1, Occludin) levels, and regulated the Th1/Th2 balance in the spleen, as well as spleen index. Elevated levels of interleukin (IL)-4, IL-5, IL-6, IL-17, and Eotaxin were revealed in AD-like skin lesions by protein arrays. Western blotting confirmed that the phosphorylation levels of ERK, P38, JNK, STAT3 and P65 were downregulated, and IL-6 expression was also reduced following QRCSD treatment. CONCLUSIONS: The study enhances the understanding of the anti-inflammatory and immunomodulatory effects of QRCSD, showcasing its significant protective role against atopic dermatitis. Treatment with QRCSD may be considered as a viable candidate for complementary and alternative therapy in managing atopic dermatitis.


Subject(s)
Dermatitis, Atopic , Mice , Animals , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Dinitrochlorobenzene/toxicity , Skin/pathology , Interleukin-6/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents/adverse effects , Immunoglobulin E
2.
Int J Biol Macromol ; 243: 125239, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37295696

ABSTRACT

Despite advances in transdermal drug delivery for treating psoriasis, there are still unmet medical needs, hyaluronic acid (HA)-based topical formulations as nanocarriers, which can increase drug concentration in psoriatic skin through CD44-assisted targeting. Here, HA was utilized as a matrix for nanocrystal-based hydrogel (NC-gel) to deliver indirubin topically for psoriasis treatments. Indirubin nanocrystals (NCs) were prepared through wet media milling and were then mixed with HA to create indirubin NC/HA gels. A mouse model of imiquimod (IMQ)-induced psoriasis and M5-induced keratinocyte proliferation were established. Then, the efficacy of indirubin delivery targeted at CD44, and anti-psoriatic efficacy using indirubin NC/HA gels (HA-NC-IR group) were evaluated. The HA hydrogel network embedding indirubin NCs enhanced cutaneous absorption of poorly water-soluble indirubin. The co-localization of CD44 and HA in psoriasis-like inflamed skin was highly elevated, suggesting that indirubin NC/HA gels specifically adhered to CD44, leading to an increase in indirubin accumulation in the skin. Additionally, indirubin NC/HA gels enhanced the anti-psoriatic effect of indirubin in both a mouse model and HaCaT cells stimulated with M5. The results indicate that NC/HA gels targeting overexpressed CD44 protein can improve the delivery of topical indirubin to psoriatic inflamed tissues. This suggests that a topical drug delivery system could be a viable approach for formulating multiple insoluble natural products to treat psoriasis.


Subject(s)
Nanoparticles , Psoriasis , Animals , Mice , Hyaluronic Acid/chemistry , Hydrogels/pharmacology , Psoriasis/drug therapy , Psoriasis/chemically induced , Skin , Nanoparticles/chemistry
3.
J Ethnopharmacol ; 317: 116807, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37331449

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Liangxue Jiedu formula (LXJDF) is an effective traditional Chinese medicine (TCM) formula for treating psoriasis of blood-heat syndrome and has been used in clinics for decades. AIM OF THE STUDY: This study aimed to discover the mechanism of LXJDF in psoriasis and the circadian clock by network pharmacology and experimental studies. MATERIALS AND METHODS: The compounds of LXJDF were obtained from the TCMSP and BATMAN-TCM databases. The genes related to psoriasis and circadian rhythm/clock were identified by the OMIM and GeneCards databases. Then, target genes were integrated by Venn and analyzed by the String, CytoNCA, DAVID (GO and KEGG) databases, and the network was constructed using Cytoscape. Mice were raised under light disturbance for fourteen days. On the eighth day, mouse dorsal skin was shaved and smeared with 62.5 mg 5% imiquimod at 8:00 (ZT0) for six successive days. Mice were randomly divided into the model, LXJDF-H (49.2 g/kg·bw), LXJDF-L (24.6 g/kg·bw), and positive drug (dexamethasone) groups. Other mice were smeared with Vaseline under the normal light cycle as the control. The drug of each group was administered at 10:00 (ZT2) and 22:00 (ZT14). The skin lesions were observed, and PASI was scored daily. HE and immunofluorescence were used to measure pathological morphology. Th17 cytokines in serum and skin were measured by flow cytometry and qPCR. Circadian clock gene and protein expression levels were determined by qPCR and Western blotting. RESULTS: We found 34 potential targets of LXJDF in the treatment of psoriasis and circadian rhythm and confirmed their importance by topology analysis. KEGG pathway analysis revealed that the two major pathways were Th17 cell differentiation and the HIF-1 signaling pathway. At ZT2 and ZT14, LXJDF improved IMQ-induced light disturbance mouse skin lesions, including alleviating scales, erythema, and infiltration, reducing PASI, and inhibiting keratinocyte hyperproliferation and parakeratosis. LXJDF reduced IL-17A, IL-17F, TNF-α, and IL-6 in serum at ZT2 and increased IL-10 at ZT2 and ZT14. LXJDF downregulated the expression of IL-17A and IL-17F in skin. At ZT2, LXJDF significantly upregulated CLOCK and REV-ERBα expression and downregulated HIF-1α expression. At ZT14, LXJDF decreased HIF-1α and RORγt expression and significantly increased REV-ERBα expression. CONCLUSION: LXJDF improves psoriasis dermatitis with circadian rhythm disorders by regulating Th17 cell differentiation.


Subject(s)
Dermatitis , Psoriasis , Animals , Mice , Interleukin-17/genetics , Interleukin-17/metabolism , Imiquimod/toxicity , Skin , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/pathology , Cell Differentiation , Dermatitis/drug therapy , Disease Models, Animal , Th17 Cells , Mice, Inbred BALB C
4.
Biomed Chromatogr ; 36(11): e5469, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35904380

ABSTRACT

Silybin, an active component in the plant Silybum marianum (L.) Gaertn., is commonly used to protect against liver disease. We investigated silybin's protective potential in rat liver against emodin-induced liver injury 4 weeks. It was found that aspartate aminotransferase and direct bilirubin serum biomarkers for liver toxicity significantly increased, and liver histopathology revealed cholestasis and necrosis in rats administered emodin alone, whereas aspartate aminotransferase and total bile acid levels in rats administered emodin and silybin simultaneously were changed compared to rats administered emodin alone. Liver mRNA and protein levels of Cyp7a1-which plays roles in cholesterol metabolism and bile acid synthesis-and Abcb11 (Bsep)-which facilitates bile salt secretion in hepatocyte canaliculi-were significantly altered with emodin, whereas cotreatment with silybin attenuated emodin's adverse effect. Metabolomic analysis using ultra-performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry determined eight potential metabolite biomarkers in serum, urine, and liver tissue. Network analysis was conducted to conceptualize the interplay of genes, metabolites, and metabolic pathways for cholesterol metabolism and bile acid synthesis for liver injury. Overall, rats administered only emodin were shown to be a sound model to investigate fat-associated drug-induced hepatoxicity or liver injury and cotreatment of emodin with silybin prevents fatty liver injury. This metabolomic study revealed that emodin-induced fatty liver injury disrupted bile acid synthesis, vitamin B6 , and glycerophospholipid metabolism pathways and that silybin ameliorates liver injury on these compromised pathways.


Subject(s)
Chemical and Drug Induced Liver Injury , Emodin , Fatty Liver , ATP Binding Cassette Transporter, Subfamily B, Member 11 , Animals , Aspartate Aminotransferases , Bile Acids and Salts/metabolism , Bilirubin/metabolism , Bilirubin/pharmacology , Biomarkers/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Cholesterol , Chromatography, Liquid , Emodin/metabolism , Fatty Liver/metabolism , Fatty Liver/pathology , Glycerophospholipids/metabolism , Liver/metabolism , Mass Spectrometry , RNA, Messenger/metabolism , RNA, Messenger/pharmacology , Rats , Silybin/metabolism , Silybin/pharmacology , Vitamins/metabolism , Vitamins/pharmacology
5.
J Asian Nat Prod Res ; 24(11): 1064-1070, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35038940

ABSTRACT

Two new cadinane-type sesquiterpenoid glycosides, dryopteristerpeneA (1) and dryopteristerpeneB (2), were isolated from the aqueous extract of Dryopterisfragrans. Their structures were determined by spectroscopic data analysis and electronic circular dichroism (ECD) calculations. Compounds 1 and 2 exhibited inhibition on nitric oxide production in lipopolysaccharide induced RAW 264.7 macrophages with their IC50 values of 60.5 and 59.8 µM, respectively.


Subject(s)
Dryopteris , Sesquiterpenes , Dryopteris/chemistry , Glycosides/pharmacology , Glycosides/chemistry , Molecular Structure , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Anti-Inflammatory Agents/pharmacology , Lipopolysaccharides/pharmacology , Nitric Oxide
6.
Am J Transl Res ; 13(11): 12440-12460, 2021.
Article in English | MEDLINE | ID: mdl-34956465

ABSTRACT

LangChuangHeJi (LCHJ) decoction has been used as a supplementary therapy to reduce the dose of prednisone and improve the therapeutic effects in systemic lupus erythematosus (SLE) maintenance. We aimed to explore the underlying mechanisms of the therapeutic effects of LCHJ. Spleen and lymph node weight, renal tissue histology, anti-dsDNA and anti-nuclear antibody levels in serum, and urinary protein levels were measured to evaluate the therapeutic effects. We further measured serum levels of multiple cytokines and antibody subsets, and performed flow cytometry analysis to observe effects of LCHJ on the frequency and activation of T cells and T cell subsets, as well as accumulation of plasma cells in splenocytes of MRL/lpr mice. LCHJ exhibited significant therapeutic effects on MRL/lpr mice. LCHJ significantly controlled the in vivo inflammation and dramatically prevented the accumulation of DN T and plasma cells in MRL/lpr mice. Moreover, LCHJ significantly suppressed the accumulation of CD138+ T cells in MRL/lpr mice, which led to the decreased production of the anti-dsDNA antibody in vivo. LCHJ significantly decreased CD4+CD138+ T cells originated from CD4+CD138- T cells, which subsequently prevented the accumulation of CD138+ T cells in MRL/lpr mice. Our results indicated that LCHJ alleviated renal injuries and prevented the enlargement of the spleen and lymph nodes by suppressing DN T cell accumulation, and reduced anti-dsDNA antibody secretion by preventing the accumulation of CD138+ T cells.

7.
Chin Med ; 16(1): 111, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34727961

ABSTRACT

BACKGROUND: Common chronic wounds include diabetic ulcers, venous ulcers, and pressure ulcers. The traditional Chinese medicine Huiyang Shengji decoction (HYSJD) has been shown to promote the healing of diabetic chronic wounds, however, its pharmacological mechanism is still unclear. PURPOSE: This study aimed to determine the mechanism of HYSJD in promoting the healing of diabetic chronic skin ulcers. METHODS: Ultra-performance liquid chromatography was combined with tandem mass spectrometry (UPLC-MS/MS) to analyze the main components of HYSJD and the absorbed components in mouse serum at 30 min after oral administration of HYSJD. db/db mouse models for chronic skin ulcers were constructed by full-thickness skin resection. Wound tissues at day 7 post wound formation were used to perform microarray analysis of growth factors and chemokine expression. GO and KEGG enrichment analysis was performed on differentially expressed proteins. ELISA assays were used to measure differential expressed cytokines in the serum and Western blot analysis was used to determine the expression levels of related pathway proteins in the skin wounds. RESULTS: UPLC-MS/MS analysis showed that the main chemical components of HYSJD were flavonoids, terpenes, alkaloids, phenylpropanoids, and carbohydrates. At 30 min after oral administration of HYSJD, five absorbed components were detected in the serum, these included formononetin, calycosin, hypaconitine, calycosin-7-glucoside, and sinapic acid. HYSJD was found to increase the wound healing rate in chronic skin ulcers in db/db mice at days 3, 7, and 14 post wound formation, and promote the proliferation of epidermal cells. Two proteins that were differentially expressed between the different groups, i.e., IGF-1 and EGFR, were further validated. Serum ELISA assays showed that serum EGFR in the HYSJD treatment group was significantly increased. KEGG pathway analysis suggested that the PI3K/AKT pathway involved in HYSJD promoting the proliferation of epidermal cells in chronic wounds in db/db mice. Experimental verification showed that HYSJD activated the PI3K/AKT signaling pathway in mouse wound skin. CONCLUSION: HYSJD promotes the proliferation of epidermal cells in chronic diabetic wounds by increasing EGFR expression in the wounds and activating the PI3K/AKT signaling pathway. Our study provides an experimental basis for the pharmacological mechanism of HYSJD.

8.
Polymers (Basel) ; 13(20)2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34685234

ABSTRACT

The difference in compatibility at the molecular level can lead to a change of microphase separation structure of thermoplastic polyurethanes blend systems, which will improve their thermal and mechanical properties. In this study, TDI-polyester based TPU was blended with MDI-polyether-based TPU and MDI-polyester based TPU, with different ratios. In the blend system, the obvious reduction of the melting temperature of the high-temperature TDI-polyester based TPU component indicates its hard segments can be mutually integrated with the other component. For TDI-polyester based TPU/MDI-polyether based TPU blends, their similar hard segment ratio and similar chemical structure of the soft segment give the molecular chains of the two components better compatibility. The aggregation structure of the two kinds of chains can rearrange at the molecular level which makes the hard domains mutually integrate to form a new phase separation structure with larger phase region distance. As a result, the yield strength of this blend increased by almost 143% when the elongation at break was only reduced by 12%. In contrast, the other group of blends still partly maintain their respective micro domains, forming a weak interface and leading to a decreased of elongation at break.

9.
Biomed Pharmacother ; 141: 111884, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34243099

ABSTRACT

BACKGROUND: psoriasis is a chronic inflammatory skin disease. The accumulation of IL-17 cytokines in the lesions leads to epidermis proliferation. Traditional Chinese medicine has a significant effect on psoriasis treatment. Among them, Tuhuaiyin is a representative prescription, which has an outstanding curative effect in acute and remission stage. METHODS: To reveal the target and molecular mechanism of Tuhuaiyin, systematic pharmacology platform and database screening were used to construct the Tuhuaiyin interaction network with compounds, targets and diseases. The intervention of Tuhuaiyin on keratinocyte proliferation and inflammation was verified in the model of psoriasis-like lesions induced by imiquimod. The effect on the number and function of IL-17-producing cells was detected, and the regulatory effect of Tuhuaiyin on gut microbial was explored. RESULTS: 32 selected active molecules in Tuhuaiyin acted on psoriasis biological processes. Tuhuaiyin significantly alleviates erythema and scales in the psoriasis like mouse model induced by imiquimod. Excessive proliferation of keratinocytes and infiltration of inflammatory cells were restrained in the dermis by using Tuhuaiyin. The expression of IL-17 was down-regulated in skin and peripheral blood. The proportion of IL-17-producing cells was decreased in immune organs. And phosphorylation of JNK inhibited in skin lesions. At the same time, the change of gut microbial diversity in the psoriasis-like model was improved. CONCLUSION: our study predicted and verified the molecular immunological mechanism of Tuhuaiyin, alleviated the abnormal proliferation of keratinocytes by inhibiting the proportion of IL-17-producing cells and the expression of IL-17 cytokines. Taken together, our data identify the therapeutic potential of Tuhuaiyin for psoriasis.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Gastrointestinal Microbiome/drug effects , Imiquimod/toxicity , Interleukin-17/antagonists & inhibitors , Network Pharmacology/methods , Psoriasis/drug therapy , Animals , Antineoplastic Agents/toxicity , Caco-2 Cells , Drugs, Chinese Herbal/pharmacology , Gastrointestinal Microbiome/physiology , Humans , Interleukin-17/biosynthesis , Male , Mice , Mice, Inbred BALB C , Psoriasis/chemically induced , Psoriasis/metabolism
10.
Front Pharmacol ; 12: 591608, 2021.
Article in English | MEDLINE | ID: mdl-33762935

ABSTRACT

The pathological mechanism of psoriasis and dyslipidemia comorbidity is unclear, and there are few reports on therapy. By establishing an animal model of ApoE-/- mice induced by imiquimod (IMQ), we explored the effects of Liangxue Jiedu formula (LXJDF), a traditional Chinese herb medicine, on psoriasis and dyslipidemia comorbidity through PI3K/Akt/mTOR pathway. The experiment was divided into a control group, a model group, an LXJDF high-dose group, an LXJDF low-dose group, and a positive drug (atorvastatin) group. Each group of mice was given continuous oral administration once a day. After 3 weeks, the mice dorsal skins were smeared with 62.5 mg of 5% IMQ cream for five consecutive days and continued to be given the corresponding drugs. We observed the effects of LXJDF on skin lesion changes, PASI score, pathological characteristics, blood lipid levels (TC, TG, LDL, HDL, and oxLDL), liver pathology, inflammatory factors in the skin, and the protein expression of PI3K/Akt/mTOR pathway in both the skin and liver. The results showed that LXJDF could significantly improve the psoriasiform skin lesions of IMQ-induced ApoE-/- mice, including the reduction of PASI, thinning of epidermal thickness, inhibition of hyperkeratosis and parakeratosis, and inflammatory infiltration in the dermis, and reduce lipid accumulation in the epidermal. LXJDF could regulate blood lipid levels, reduce liver inflammation, and protect the liver. LXJDF could significantly decrease the gene expressions of inflammatory factors IL-17A, IL-23, IL-6, and TNF-α in the skin. LXJDF showed specific inhibition of PI3K, Akt, mTOR protein, and its phosphorylation expressions. In conclusion, LXJDF exerts an intervention effect on psoriasis and dyslipidemia comorbidity via PI3K/Akt/mTOR and its phosphorylation pathway.

11.
Zhongguo Zhong Yao Za Zhi ; 46(2): 388-390, 2021 Jan.
Article in Chinese | MEDLINE | ID: mdl-33645126

ABSTRACT

Two phloroglucinol compounds(1-2) were isolated and purified from 95% ethanol extract of Dryopteris fragrans through various column chromatographies on silica gel, Sephadex LH-20, medium pressure column chromatography, and preparative HPLC. Their structures were elucidated as 2',4',6'-trihydroxy-5'-methyl acetate-3'-methyl-1'-butyrophenone(1) and aspidinol B(2) based on their chemical and physicochemical methods and spectroscopic data. Compound 1 is a new phloroglucinol compound named "dryofraginol".


Subject(s)
Dryopteris , Chromatography, High Pressure Liquid , Ethanol , Phloroglucinol , Plant Extracts
12.
J Immunol Res ; 2021: 4678087, 2021.
Article in English | MEDLINE | ID: mdl-33532507

ABSTRACT

BACKGROUND: Psoriasis (PA) is a chronic autoimmune disease of the skin that adversely affects patients' quality of life. Yangxue Jiedu Fang (YXJD) has been used for decades to treat psoriasis in China. However, its antipsoriatic mechanisms are still poorly understood. In this study, we explored the effects of YXJD on angiogenesis and apoptosis of microvessels in PA, the underlying mechanisms in HUVEC cells transfected by Survivin overexpression plasmid and in a mouse model of imiquimod-induced psoriasis and the relationship between VEGF (vascular endothelial growth factor) and Survivin. METHODS: A BALB/c mouse model of imiquimod- (IMQ-) induced PA was established, and the mice were treated with YXJD. Cell viability was assessed by CCK8 assay. Apoptosis was detected by annexin V-FITC/PI double-staining and caspase-3 assays. The PI3K/Akt/ß-catenin pathway was analyzed by western blotting, ELISA, and immunochemical analysis. RESULTS: YXJD ameliorated symptoms and psoriasis area and severity index (PASI) scores and also reduced the number of microvessels, as determined by the microvessel density (MVD). The expression of apoptotic protein Survivin in endothelial cells, autophagy-related proteins p62, and angiogenic proteins VEGF was inhibited by YXJD, and the repressed expression of LC3II/I increased by YXJD. The proteins related to the PI3K/Akt pathway and ß-catenin expression and the nuclear entry of ß-catenin were reduced in IMQ-induced PA mice treated with YXJD. In HUVEC cells transfected by Survivin overexpression plasmid, we observed YXJD regulated the expression of Survivin, LC3II/I, and p62, VEGF, and PI3K/Akt pathway-relative proteins and the nuclear entry of ß-catenin. CONCLUSIONS: YXJD inhibited the expression of Survivin via PI3K/Akt pathway to adjust apoptosis, autophagy, and angiogenesis of microvessels and thus improve the vascular sustainability in psoriasis. YXJD may represent a new direction of drug research and development for immunomodulatory therapy for psoriasis.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Drugs, Chinese Herbal/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Psoriasis/metabolism , Signal Transduction/drug effects , Survivin/metabolism , Angiogenesis Inhibitors/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Disease Models, Animal , Drugs, Chinese Herbal/chemistry , Endothelial Cells , Humans , Immunohistochemistry , Immunophenotyping , Mice , Psoriasis/drug therapy , Psoriasis/pathology , Vascular Endothelial Growth Factor A/metabolism
13.
Oxid Med Cell Longev ; 2020: 3815185, 2020.
Article in English | MEDLINE | ID: mdl-32908632

ABSTRACT

Cardiac dysfunction is a critical manifestation of sepsis-induced multiorgan failure and results in the high mortality of sepsis. Our previous study demonstrated that a traditional Chinese medicine formula, Qiang-Xin 1 (QX1), ameliorates cardiac tissue damage in septic mice; however, the underlying pharmacology mechanism remains to be elucidated. The present study was aimed at clarifying the protective mechanism of the QX1 formula on sepsis-induced cardiac dysfunction. The moderate sepsis model of mice was established by cecal ligation and puncture surgery. Treatment with the QX1 formula improved the 7-day survival outcome, attenuated cardiac dysfunction, and ameliorated the disruption of myocardial structure in septic mice. Subsequent systems pharmacology analysis found that 63 bioactive compounds and the related 79 candidate target proteins were screened from the QX1 formula. The network analysis showed that the QX1 active components quercetin, formononetin, kaempferol, taxifolin, cryptotanshinone, and tanshinone IIA had a good binding activity with screened targets. The integrating pathway analysis indicated the calcium, PI3K/AKT, MAPK, and Toll-like receptor signaling pathways may be involved in the protective effect of the QX1 formula on sepsis-induced cardiac dysfunction. Further, experimental validation showed that the QX1 formula inhibited the activity of calcium/calmodulin-dependent protein kinase II (CaMKII), MAPK (P38, ERK1/2, and JNK), and TLR4/NF-κB signaling pathways but promoted the activation of the PI3K/AKT pathway. A cytokine array found that the QX1 formula attenuated sepsis-induced upregulated levels of serum IFN-γ, IL-1ß, IL-3, IL-6, IL-17, IL-4, IL-10, and TNF-α. Our data suggested that QX1 may represent a novel therapeutic strategy for sepsis by suppressing the activity of calcium, MAPK, and TLR4/NF-κB pathways, but promoting the activation of AKT, thus controlling cytokine storm and regulating immune balance. The present study demonstrated the multicomponent, multitarget, and multipathway characteristics of the QX1 formula and provided a novel understanding of the QX1 formula in the clinical application on cardiac dysfunction-related diseases.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Heart/physiopathology , Sepsis/complications , Animals , Cytokines/blood , Disease Models, Animal , Drug Delivery Systems , Drug Evaluation, Preclinical , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Heart/drug effects , Heart Diseases/blood , Heart Diseases/drug therapy , Heart Diseases/pathology , Heart Diseases/physiopathology , Male , Mice, Inbred BALB C , Tissue Distribution/drug effects
14.
ACS Omega ; 5(18): 10489-10500, 2020 May 12.
Article in English | MEDLINE | ID: mdl-32426606

ABSTRACT

Polygonum multiflorum Thunb. (PM) is one of the most frequently used natural products in China. Its hepatotoxicity has been proven and reported. However, chronic PM toxicity is a dynamic process, and a few studies have reported the long-term hepatotoxic mechanism of PM or its nephrotoxicity. To elucidate the mechanism of hepatotoxicity and nephrotoxicity induced by PM after different administration times, different samples from rats were systematically investigated by traditional biochemical analysis, histopathological observation, and nontargeted metabolomics. The concentrations of direct bilirubin (DBIL) at 4 weeks and total bile acid, DBIL, uric acid, and blood urea nitrogen at 8 weeks were significantly increased in the treatment group compared with those in the control group. Approximately, 12 metabolites and 24 proteins were considered as unique toxic biomarkers and targets. Metabolic pathway analysis showed that the primary pathways disrupted by PM were phenylalanine and tyrosine metabolism, which resulted in liver injury, accompanied by chronic kidney injury. As the administration time increased, the toxicity of PM gradually affected vitamin B6, bile acid, and bilirubin metabolism, leading to aggravated liver injury, abnormal biochemical indicators, and marked nephrotoxicity. Our results suggest that the hepatotoxicity and nephrotoxicity caused by PM are both dynamic processes that affect different metabolic pathways at different administration times, which indicated that PM-induced liver and kidney injury should be treated differently in the clinic according to the degree of injury.

15.
Front Pharmacol ; 9: 818, 2018.
Article in English | MEDLINE | ID: mdl-30104976

ABSTRACT

Sepsis is reported to be an unusual systemic reaction to infection, accompanied by multiple-organ failure. Sepsis-induced cardiomyopathy (SIC), defined as damages and dysfunction of the heart, is essential in the pathogenesis of sepsis. Traditional Chinese formula, which has long been used to improve the situation of patients through multitarget regulation, is now gradually being used as complementary therapy. The present study aimed to investigate the effect of Qiang-Xin 1 (QX1) formula, a traditional Chinese herbal medicine designed for cardiac dysfunction, on cecal ligation puncture (CLP)-induced heart damage and its underlying mechanisms in mice. Survival test first showed that an oral administration of QX1 formula significantly increased the 7-days survival of septic mice from 22 to 40%. By estimating the secretion of serum cytokines, QX1 treatment dramatically inhibited the excessive production of interleukin-1ß and tumor necrosis factor-α. Immunohistochemical staining illustrated that the expression of c-Jun N-terminal kinase, caspase-12, and high-mobility group box 1 was downregulated in cardiomyocytes of the QX1-treated group compared with that of the CLP surgery group. Western blotting confirmed that the activation of essential caspase family members, such as caspase-3, caspase-9, and caspase-12, was prohibited by treatment with QX1. Moreover, the abnormal expression of key regulators of endoplasmic reticulum (ER) and mitochondria-associated apoptosis in cardiomyocytes of septic mice, including CHOP, GRP78, Cyt-c, Bcl-2, Bcl-XL, and Bax, was effectively reversed by treatment with QX1 formula. This study provided a new insight into the role of QX1 formula in heart damage and potential complementary therapeutic effect of traditional Chinese medicine on sepsis.

16.
J Asian Nat Prod Res ; 18(1): 59-64, 2016.
Article in English | MEDLINE | ID: mdl-26700189

ABSTRACT

Phytochemical investigation on the aqueous extract from Dryopteris fragrans led to the isolation of one new chromone glycoside, frachromone C (1), and one new coumarin glycoside, dryofracoulin A (2), together with one known undulatoside A (3). Their structures were elucidated by a combination of 1D and 2D NMR, HRMS, and chemical analysis. Compounds 1-3 exhibited inhibition on nitric oxide production in lipopolysaccharide induced RAW 264.7 macrophages with their IC50 values of 45.8, 65.8, and 49.8 µM, respectively.


Subject(s)
Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Coumarins/isolation & purification , Coumarins/pharmacology , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Dryopteris/chemistry , Glycosides/isolation & purification , Glycosides/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Chromones , Coumarins/chemistry , Drugs, Chinese Herbal/chemistry , Glycosides/chemistry , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Mice , Molecular Structure , Nitric Oxide/biosynthesis , Nuclear Magnetic Resonance, Biomolecular , Plant Extracts/chemistry
17.
Zhongguo Zhong Yao Za Zhi ; 34(23): 3025-9, 2009 Dec.
Article in Chinese | MEDLINE | ID: mdl-20222416

ABSTRACT

OBJECTIVE: To study and establish the optimal technology for the preparation of evodiae juice. METHOD: The contents of evodiamine, rutaecarpine and evodin were simultaneously determined with HPLC, and each yield of the three compounds were chosen as the evaluating indicator. The orthogonal test coupled with the weighted coefficient method were adopted to acquire the optimal technology for the preparation of evodiae juice. RESULT: The study showed that the optimal technology for the preparation of evodiae juice was as follows: decocted three times while the first time was with 12-fold of water socked 30 minutes and decocted 45 minutes, the second time was with 8-fold of water decocted 20 minutes and the third time was with 6-fold of water decocted 20 minutes. CONCLUSION: This method is simple and accurate. The optimal technology is suitable for industry manufacture of evodiae juice.


Subject(s)
Drugs, Chinese Herbal/analysis , Evodia/chemistry , Technology, Pharmaceutical/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...